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SUMMARY 

A numerical calculation has been car r ied  out to evaluate the 3 x 3 

c r o s s  section matr ix  involved in the electron impact excitation of the 

v ground state of H atom to the 2 s  a n d  the  2p levels. The method o f s n l u -  

tion is that of atomic eigenstates expansion. Similar calculation has  been 

car r ied  out by Burke, Schey and Smith. In this paper ,  however, the 

definite integral t e rms  in the coupled radial differential equations a r e  

eliminated through some linear transformation of the radial functions, 

thus avoiding iteration of theseequations. As a result ,  the equation of 

reciprocity and the equation of continuity of currents  a r e  numerically 

satisfied with a n e r r o r  to value ratio l e s s  than 1 per  1000 on the aver -  

age, and the maximum of this ratio, except for  a few cases ,  has  been 

kept below 1%. A simple perturbation theory has been developed to 

evaluate the effect of the long range and the centrifugal potentials. The 

f ivecross  sections, l s -2sY l s -2pY 1s - I s ,  2s-2s and2p-2p,are  tabulated. 

The agreement of the 1s-2s cross  sections with the experimental 

resul ts  a r e  satisfactory while the calculated 1 s-2p c r o s s  sections a r e  

higher than the corresponding experimental values. The 2s-2s and the 

2p-2p c ross  sections have large values, specially a t  the thresholds. A 

Ramsauer effect in the partial cross  sections of the 2s-2s elastic 

scattering i s  observed. By comparison with the eigenstate expansion 

calculation i t  is found that the Born approximation, despite i t s  simplic- 

ity, gives meaningful results for  low and close to threshold energies of 

the bombarding electrons. In this paper the effect of the electron spin 

and the exchange potentials a r e  a l so  investigated. 

. . .  
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I. INTRODUCTION 

The recent experimental results of Lichten and Schultzl on one hand, 

and Stebbing et  a1.2 on the other, of the 1s - 2 s  transition c r o s s  section 

in the hydrogen atom by electron impact and the apparent discrepancy in 

these measurements,  and the measurement of 1s -2s transition by Fi te  

e t  al.3 also in hydrogen, necessitate accurate calculation for these c ros s  

sections. 

Calculation of the excitation cross  sections in atomic hydrogen by 

electron impact corresponds to the solution of the problem of three in- 

teracting bodies, one proton and two electrons. By taking the position 

of the proton as the center of mass,  the problem will reduce to the task 

of finding the nonseparable wave function of the system of the two elec- 

t rons with an attractive center of force. 

found yet. However, if this wave function is expanded in t e r m s  of the 

eigenstates of the hydrogen atom, i t  is shown inthis  paper that through 

numerical integration the coefficients of the expansion, which a r e  func- 

tions of the position vector of the free electron, can be found exactly. 

When an infinite number of t e rms  a re  included in the expansion the solu- 

tion to the problem is exact. Furthermore,  the expansion has the ad- 

vantage that the asymptotic form of i t s  coefficients a r e  automatically the 

asymptotic form of the f r ee  electron wave function scattered from dif- 

ferent  atomic states, which a r e  simply related to the excitation c r o s s  

sections . 

Such solution has not been 

1 



In this paper atomic s ta tes  I s ,  2s ,  2p a r e  included in the expansion, 

and by antisymmetrizing the two electron wave functions according to  the 

exclusion principle, some contribution f rom the continuum in the expan- 

sion is also taken into account. The f i r s t  calculation of this type was 

performed by Marr io t4  whose expansion consisted of the 1s  and the 2s 

states  in order to calculate the 1s -2s transition c r o s s  section. 

calculation was extended by Smith5 to higher total orbital  angular mo- 

menta of the system. Percival  and Seaton6 have formulated the eigen 

state expansion technique in general, and have tabulated the coefficients 

of the integro-differential equations for  s ,  p and d atomic electrons. 

While this paper was in preparation, Burke, Smith and  she^,''^^ using the 

tables of reference (6) for  three s ta tes  I s ,  2 s ,  2 p ,  have integrated the 

resulting integr o - diff e rential  e quati ons . 
is substantially different f rom that of this paper  in more  than one r e -  

spect, and i t  i s  believed that the resul ts  presented here  a r e  more  

accurate.  

This 

Thei r  technique of solution 

The degeneracy of the 2s and the 2p levels of the hydrogen atom 

makes i t  necessary,  a s  pointed out by Massey,8 that any calculation 

concerning l s - 2 ~  o r  1s -2p transit ions contain these two s ta tes  

simultaneously. In this respect the present  calculation and that of re fer -  

ence (7)  is superior to that of reference (4),  where 1 s  and 2s states  a re  

included to calculate 1s -2s transition, o r  that of Khashaba andMassey? 

where 1s and 2p states  a r e  included to calculate 1s +2p transition. 

. 
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. 

We t rea t  the present problem in the following manner. In Sec. IIA 

we derive the integro-differential equations of the problem independent 

of reference ( 6 ) .  Sec. IIB is the derivation of the transmission mat r ix  

and the c ros s  sections. In Sec. IIC we derive a useful relationship fo r  

numerical  integration based on the symmetry of the interacting potentials. 

Sec. IID is the derivation of the partial wave Born approximation t rans-  

mission matrix. 

numerical  integration and the effects of the long range potentials. 

transformation of the radial wave functions presented here  avoid the 

need for  iteration of the coupled integro-differential equations, a s  is 

the case in reference (7). 

cal integration and their interpretation. 

Different par ts  in Sec. I11 deal with techniques of 

The 

Finally, Sec. IV gives the results of numeri-  

The numerical integrations were ca r r i ed  out for  all  partial  waves, 

where in higher partial  waves Born approximation were used. The 

transition between the eigenstate expansion calculation and Born ap- 

proximation takes place when the results of the two calculations agree 

closely. 

3 



o r v  

a r e  

11. FORMULATION 

A. Derivation of the Differential Equations 

Since spin orbit interaction of the electrons a r e  neglected, the total 

tal  angular momentumL, and the total spin angular momen um S ,  

separately conserved. 'We can then divide the interactions into anti- 

parallel  spin states where S = 0 , and parallel  spin states where S = 1. 

We then deal with spatial wave functions of the electrons only and for  

brevity we call the orbital angular momentum the angular momentum. 

Neglecting the motion of the proton of the hydrogen atom and taking 

i t s  position as the origin of the coordinate system, the Schroedinger 

equation for the system can be written 

[H-El + ( r l ,  c 2 )  = 0 ,  

where r l  and r 2  a r e  the position vectors of the bound and f r e e  electrons, 

and in atomic units 

where E is the total energy of the system andr12 is the distance between the 

two electrons. 

eigenfunctions of the total angular momentum L , 

We expand the total wave function + ( r l ,  r2) in t e r m s  of the 

4 



Since these eigenfunctions are orthogonal and distinct, substitution of 

Eq. ( 2 . 3 )  in Eq. ( 2 .  1) gives, 

[H-El $ L ( ~ l ,  c 2 )  = 0 .  (2 .4 )  

The explicit form of ,$L( cl, c 2 )  is given by 
, 

Here 'p(nldl m l , c l )  is the hydrogen atom wave function with radial par t  

r i l ~ ( n ~ $ ~ ,  rl) and angular par t  Y& 

ril u(knl$2, r2) is the radial  par t  and Y& 

electron wave function with quantum numbers k, $2m2. 

between the wave number kn 

( Q1) and quantum numbers n . e l m l  ; 
I" 1 

( Q2) is the angular par t  of the f r e e  
2" 2 

The relationship 
1 

and n1 is given by 
1 

Finally the constants C '1'2~ =(&142mlm2 I LM) a r e  vector coupling coefficients 

which make the l inear combination of the products of the one electron wave 

functions in Eq. (2. 5) the eigenfunction of L .  

sideration nl = 1, 2;  &, = 0 , l ;  t2 = IL 

and m2 = - .e2, .  . ., t2 .  

"lrn2Y 

In the problem under con- 

I s.. . . . s IL +&, I ; ml = -$,, . . ., $, 
To make the total wave function symmetr ic  for  

5 



antiparallel spins o r  antisymmetric for  parallel  spins, the operator P,, 

interchanges r 1  and c 2  while p is + 1  for  the first case and is -1  for  the 

second. 

By taking L perpendicular to the z-axis M = 0 and m, =-ml. Eq. (2.5) 

can then be written 

In order that $L ( rl, r , )  closely approximates the exact wave function, 

we minimize the expectation value of the energy operator with respect to 

the radial  parts of the f r ee  electron wave functions, 

6 $,* ( r l ,  r2) [H-El , $ L ( c l ,  c2) d3rl d3r2 = 0 .  ( 2 . 9 )  

It has been shown by K o h l o  that the differences between the scattering 

amplitudes obtained f rom these equations and the exact scattering ampli- 

tudes a r e  quadratic in the difference between $L( cl, r2)  and the exact wave 

function. When the variation is car r ied  out inside the integral we obtain 

6 



By means of Eqs. (2.2), (2. a),  the Schroedinger equation for  the hydro- 

gen atom, 

and Eq. (2. 7), Eq. (2. 10) reduces t o  

(2.11) 

(2 .12)  

where V 2  is the radial pa r t  of V i .  

and spherical harmonics wave functions, the relationll 

By orthogonality of the hydrogen atom 
'2 

the integration by par t s  of the exchange terms,  and the relationl2 

(2. 13) 

(2. 14) 

7 



Eq. (2. 12) leads to 

x u (k ti, rl)drl = 0 .  (2.  15) " 1' 

If 1/r12  is  expanded in terms of the Legendre polynomials and use i s  made 

of the addition theorem l3 we obtain 

(2. 16) 

a 



Inthis  expression 8,, is the angle between the position vectors t1 and 

r2 at the origin, and r< is the smaller and r, is the la rger  of l r l I  and 

l c 2 1  . We also introduce 

( 2 .  17) 

Then it follows that 

By means of Eq. (2 .  18), the relation14 

and the definition 

(nd 1 k n  8’) = P ( n x ,  r )  u(k,  .e’, r )  J r ,  
1 1 

(2 .  19) 

( 2 .  2 0 )  

Eq. (2. 15) when multiplied by r2 gives 

9 



In the exchange integrals above we have defined ~ ( k ,  .e2, r) as u(kn d 2 ,  r ) .  
1 1 

The vectorial equations 

L = I, t 1 2 ,  ( 2 .  2 2 )  

where L is constant but I ,  and I 2  take the values given before, can be 

divided into two groups, one with L -4, -z2  even and the other with 

L - 4, -42  odd. 

4,  + X 2 ,  in  the first group the wave function has the par i ty  of L and in the 

second a parity opposite to  L.  

distinct groups of interactions. 

Since the total spacial  wave function has the parity of 

By conservation of parity we have two 

In this problem, where Is, 2 s  and 2p 



states  of atomic hydrogen are taken into account, it is easy to see  that 

when L - dl - t2 is even, the set  of quantum numbers kn d2 has 4 

values; one fo r  each of the 1 s  and 2 s  states and two for  the 2p state. 

When L - 8: - /e2 

elastic scattering of electrons by the 2p state of the hydrogen atom. 

1 

is odd, kn 42 has one value which corresponds to  the 
--I 

Eq. (2.21) is  evaluated for  these cases and the resulting differential equa- 

tions a r e  listed in Appendix I. In evaluating Eq. (2.21) it should be noted 

4 4 4  that the C 1 2 coefficients a r e  subject to the condition that 
mlm2m3 

form a closed triangle and m3 = ml + m2. l5 This limits the summation 

over  A and p considerably to few terms only. Summation over 

ml, mi, h and ,u a r e  car r ied  out using the numerical values of the C coef- 

ficients given by Condon and Shortley.16 

Percival  and Seaton 15 have derived the same differential equations 

fo r  the scattering of f r e e  electrons by atomic s ,  p and d electrons in  

hydrogen atom using the theory of irreducible tensor operators to 

evaluate the interaction terms between the two electrons in  the dif- 

ferential  equations. The calculation becomes considerably simpler in  

this way. The results of the two methods a r e  identical. 

In the r e s t  of the paper except Sec. IIE we discuss the solutions 

to the four coupled differential equations given in Appendix I and which 

arise when L - 4, - t2 

L - 4, - t2 odd is derived in  Sec. IIE. 

t reated as a special case of the f o u r  coupled differential equations. 

is even. The single differential equations for  

Its numerical integration can be 

11 



When the integrals representing the direct  potentials in the four  
I 

differential equations a r e  evaluated and some change is made in the 

l imits  of the exchange potential integrals, these equations can be 

written in the following matr ix  form 
I 

( 2 . 2 3 )  

The four components of u a r e  the four radial functions of the f r ee  electron. 

V i s  a 4x4 symmetric mat r ix  that is the sum of three ma t r i ces ,  

Vij =D.. t E.. 1 1 '  
1 J  

( 2 .  24)  

where D i j  is the direct  and E i j  is the exchange potentials and both a r e  

functions of r. 

to r and for  the purpose of numerical  integration it can be written a s  the 

sum of two matrices.  

in Appendix 11. 

other values of i and j .  

the components of u on the right hand side of Eq. (2 .  23)  a r e  inside the 

integrals of the exchange te rms .  

The matr ix  E . .  contains in addition integrals with respect  
1 J  

U The explicit forms  of D i j ,  F i j ,  gyj and hij  are given 

The value of o i s  2 fo r  i = j = 3  and i=j=4,  and is  1 for  all 

It is  understood that f o r  the exchange t e r m s  

12 



B. Derivation of the Transmission Matrix F r o m  Solutions 

of the Differential Equations 

The method is  s imilar  to that used by Bransden and McKee,” 

and by Marriot! Eq. (2. 23) constitutes a set  of 4 coupled, second 

order ,  differential equations. Three components of u can be elimi- 

nated from these equations, resulting in an gtiz order  differential 

equation for  the remaining component. 

solutions toEq. (2.23). However, only half of these solutions a r e  

Therefore there a r e  8 se t s  of 

regular a t  the origin. Each of the four regular solutions corresponds 

to a definite vector u .  

by a 4x4 matr ix  u n j  , n , j  = 1, 2, 3 ,  4, where n corresponds to the partic- 

ular  component and j corresponds to the particular solution of u .  

four  solutions a r e  car r ied  out numerically in the next section. 

The four vectors can properly be represented 

The 

F r o m  the explicit form of V i t  can be seen that V vanishes a t  infinity. 

The asymptotic solutions of u a s  given by Eq. ( 2 .  2 3 )  is therefore 

l .-r 
u n j  (r )  -, anjs in(kn r - 2 t snj  ) ,  (2. 25) 

1 3  



where a,] is the amplitude and Zn, is the phase shift of the j f h  solution of 

the nth component of u. 

Corresponding to the 4 components of u there a r e  4 channels open to 

the reaction. 

travelling wave in the nth channel will be given by 

If the incident wave be in the m t h  channel (m =1, 2, 3,  4), the 

un(r) -exp [-i(knr - - I  1 T)] Z ( m , n )  - S, ,  exp 
2 "  

n = 1, 2, 3, 4. ( 2 .  2 6 )  

The constantsSmnare the amplitudes of the scattered waves. 

(2.26) a r e  also the asymptotic solutions of Eqs. (2 .23) ,  they must be 

equal to linear combinations of Eqs. (2. 25). 

of the linear combinations PI we must have 

Since Eqs. 

If we call  the coefficients 

4 

Plan]  sin 

n, m = 1, 2, 3, 4. 

14 



On the right-hand side, we have used the normalization of Blatt and 

Weisskopf!* If we equate the coefficients of exp - i knr  - Inn)] and [ (  
in Eqs. (2. 27) we obtain 

A ’I 
-2 i C pj a n j  exp -p snj] = - 

j =1 

4 

- 2 i  
pj a n j  exp [i sn1] = - Smn 

j t l  K 

Separation of Eqs. (2. 28) into real  and imaginary par t s  gives 

4 

4 

[(RPj)cos S n j  +(J €‘,)sin Znj] anj = 0 
j rl 

(2.29) 

In the above ‘R or  9, represent the real  o r  the imaginary par t  of the quantity 

that follows them. 

unknowns RPj, A Pi, ‘R Smn and 9, Smn. Once these unknowns a r e  found,” the 

magnitude of S,, 

Eqs. (2. 29) a re  a set  of 16 linear equations for  16 

will be given by 

15 



I Smn = ( R Smn)2 + (9  SmJ2 ( 2 .  30) 

The cross  section is obtained by asymptotic expansion in spherical  

harmonics of the incident plane wave20 

( 2 . 3 1 )  

The magnitude of the ingoing wave on the right hand side of Eqs. ( 2 .  27) fo r  n = m 

is [ k m / v ( 2 1 , t  1)]”2 t imes the magnitude of the partial  wave of the ex- 

pansion of r exp [ i k m z  ] .  . The plane wave has a flux of v which, in atomic 

units, is equal to k .  

is therefore kf  / [n( 21 

( S m n 1 2 .  

outgoing flux to the ingoing flux over the initial states,  and sum over the 

final states.  F o r  a particular spin state of the two electrons, unpolar- 

ized electron beam and unoriented atoms, the multiplicity of the initial 

states is ( 2 1 ,  t 1)(212 + 1), where 1 ,  andl,  a r e  the angular momentum 

of the bound and f r e e  electrons. F o r  a polarized beam, m 2  = 0 ,  where 

m 2  is the magnetic quantum number of the f r e e  electron. Then m 1  = M ,  

where m, and hl a r e  the bound electron and the total magnetic quantum 

numbers. 

The ingoing flux of the right-hand side of Eqs. (2 .  27) 

t I)]. The outgoing flux in the channel n # m is 

The c ross  section is obtained when we average the ratio of the 

Since M is constant there is only one initial state f o r  a 

16 



polarized beam. The multiplicity of the final states is 2L+ 1, where L is 

the total orbital angular momentum. 

m f n  is 

Since .em = .ee2, the c ros s  section fo r  

( 2 . 3 2 )  

The outgoing partial  wave in the incident channel m consists of the 

scattered wave plus the outgoing wave given in the expansion of the plane 

wave. 

amplitude of the scattered wave i s  I 1 - Smml. 

c ross  section is therefore given by 

Then, according to Eqs. ( 2 . 2 7 )  for  n = m the magnitude of the 

The elastic scattering 

( 2 . 3 3 )  

If we define a matr ix  T by the relation 

T = I - S ,  (2.34) 

Eqs. ( 2 . 3 2 )  and ( 2 . 3 3 )  can then be combined into a single equation, 

( 2 . 3 5 )  

is the transmitted amplitude in the nth channel due to a n  incident wave Tmn 

in the 18’ channel. The elements of Tmn constitute the transmission 

matrix. 

17 



The matrix S has two properties that a r e  useful as tests on the 

accuracy of numerical integration. F r o m  Eq. (2.26) it can be seen that 

S transforms the ingoing wave into the outgoing waves. The continuity 

of the electronic current  requires that S be a unitary matr ix  

4 

(2.36) 
r 

n r l  

Furthermore,  since the Hamiltonian is Hermetian, S must  be sym- 

18 metric, 

(2. 37) 

Eqs. (2.36) and (2.37) a r e  used as tes ts  on the accuracy of numerical  

integration. 

C. A Useful Relationship 

A relationship based on the symmetry of the interaction potentials 
I 

can be derived which serves  as another test on the accuracy of the 

solutions. The Z t h  and the kth solutions of the ith component of u by 

Eq. (2.23) are  given by 

18 



[$ +ki - l i  

i 

(2.38) 

Multiplying the f i r s t  by uik and the second by uil , subtracting the two 

expressions and summing over i gives 

k i k  2 uil uil 7 d2  " i k  ] = 'ij [ u i k u j l  'Uil ujk]  ( 2.39) 
i , j  dr  

i 

I 

~ 

Since Vi, = Vji , the interchange of the summation indices changes the 
I 

sign on the right hand side of the equation, the right hand side must  there- 

fore be zero. Integrating the left hand side f rom zero  to infinity we obtain I 

(2.40) 

Integrating the above equation by parts, and applying Eq. (2.25) we obtain 

4 

(2.41) 

k, 1 = 1, 2, 3, 4, k # 1 .  

19 



Although the t e rms  containing the exchange potentials do not cancel out 

on the right hand side of Eq. (2. 39) the cancellation does take place af ter  

the integration is car r ied  out in Eq. (2.40). 

D. Transmission Matrix According 

to Born Approximation 

The Born approximation consists of neglecting the exchange potential 

t e r m s  appearing in the V matrix of Eq. (2. 23), andalso of neglecting 

all  the direct potential t e rms  in this matr ix  except those t e r m s  that 

connect the incident channel to all other channels. 21 Eq. (2. 2 3 ) ,  when 

the incident wave is inthe m t l l  channel, reduces to 

(2.42) 

n = I, 2, 3, 4, 

urn and u n  are  given asymptotically by 

(2.43) 

(2.44) 

We have chosen the constants of proportionality of urn and u n  such that 

Bnm i s  the Born approximation of the reactance matrixR. 2 2 7 2 3  Eq. (2. 43) 

shows that urn must have the following form24 

20 



where jlm(kmr) a r e  spherical  Bessel functions. 

sents the homogenous solution of Eq .(2.42), i t  must  have the following 

Fur thermore ,  if y, r ep re -  

(2.46) 

s i n  ( k , r  - In77/2), (2.47) y, - a n  

with a, some unknown constant. 

y, 

integration 

Multiplying Eq. (2.42) on the left by 

and integrating the resul t  from ze ro  to infinity we obtain by par t ia l  

',(in t 1) u n  d r  1 
m m 

2 y, D,, urn c!r = y n [ -  t k: - 
d r2 r 2  

0 

H = - k n  a n  Prim. 

The las t  equality has  been obtained by noticing that y, and u n  vanish a t  the 

origin, and by using their  asymptotic fo rms  as given by Eqs. (2.44) and 

(2.47). We therefore have 

This i s  identical to the expression given fo r  B by Seaton. 25 
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The transmission and the reactance matr ices  a r e  related by T = - 2 i  R / (1 -  i R ) .  

Since B << 1 ,  the transmission matr ix  according to the Born approximation is 

given by 

= 4i  (k,km)1’2 j$n (k, r )  Dnm j$., (kmr)  r 2  dr  . *n rn (2.49) 1 
Substitution of Eq. ( 2 .  49) is Eq. (2. 35) would give the c r o s s  section according 

to the Born approximation. It should be noted that the symmetry of T insures  

Eq. (2.  37) to be satisfied while Eq. (2. 36)  is not satisfied anymore. 

define T = -2 iB/ (1  - i B ) ,  then 

makes S unitary. Eq. (2.  36) ,  the continuity of current,  is then satisfied. 

This is  the definition of approximation I1 of the Born approximation according 

to S e a t ~ n ~ ~  which will be discussed later.  

- 
\. 

If we 

S = (1 + i B ) / ( l  - i B )  and the symmetry of B 

E. Elastic Scattering of Electrons 

by the 2p States of the Hydrogen Atom 

The angular momentum of the f r ee  electron, l , ,  in the 2p channel has 

the values L -  1, L , L  t 1 ,  where L is the total angular momentum of the 

system. The f i r s t  and the las t  values were considered in previous sections. 

The case I ,  = L corresponds to a wave function in the 2p channel with a 

parity different f rom al l  channel wave functions considered previously. 

It therefore corresponds to elastic scattering. The wave function in this 

I case  is given by 

22 



T1 

When Eq. (2.9) is formed with this wave function, and minimized with 

respect  to u(k2L ,r2 ), treatment which led to the derivation of the four 

differential equations will give the following differential equation 

d2 [z t kf - L(L ' '1 + 21 uL( r) 
r 2  r 

3 ~ , - ~  ( W , L ,  r)  3yL+; (2pk,L, r )  I r 
t = 0 (2. 51) 

t 2 p r R 2 1  (r)  I- ( 2 L + 1 )  ( 2 L - 1 )  ( 2 L t 1 )  ( 2 L + 3 ) ]  

The asymptotic solution of this equation is given by 

u L * a L  s i n ( k 2 r - L n / 2 + 6 , ) .  (2 .  52) 

If the scattering amplitude is designated by T,, it can be shown f rom 

Sec. IIB that for a particular L 

T,, = l - e x p 2 i 8 = - 2 i e x p ( i 6 ) s i n 6 ,  (2. 53) 

where fo r  simplicitywe have suppressed the subscript  L .  

section, according to Eq. (2.35), is given by 

The c ross  

(2. 54) 



The total  elastic scattering c r o s s  section by the 2p states i s  the sum of 

this c ros s  section and the c ros s  section corresponding to I ,  = I, - 1 and 

I ,  = L + 1 which were considered previously. 

The Born amplitude, Eq. (2.48) in this case is given by 

a) 

€3 5 s  = - 2k, 1 j, (k , r )  D,, jL(kzr )rz  d r ,  
0 

where by Eq. (Z.51), 

1 1 
= - 7 + yo ( 2 p 2 p ,  r) - - 5 y2 ( 2 ~ 2 ~ ~  r) . 

(2. 55) 

(2. 56) 

111. NUMERICAL INTEGRATION 

A. Decomposition of the Differential Equations 

If it  were not for  the definite integrals appearing in the potential 

matr ixV,  the set  of the four coupled differential equations ( 2 . 2 3 )  could be 

integrated by any standard technique. 

constants whose integrand involve the unknown functions makes it 

necessary to solve these equations by iteration o r  by transformation 

of u into other vectors, whose differential equations do not contain 

definite integrals. 

small  as compared to the direct  potentials, the iteration method can be 

The presence of these unknown 

Since the t e r m s  containing definite integrals a r e  
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used by assuming that the values of these integrals a r e  zero. 

differential equations a r e  then integrated, the values of the definite 

The 

integrals that a r e  subsequently obtained a r e  substituted in the differential 

equations, and the integration is  repeated. The process  i s  repeated 

until sufficiently consistent values of these integrals a r e  obtained. 

method is useful if the convergences of the constants a r e  fast  eEgligh, 

This 

and the c r o s s  section i s  not very sensitive to the values of these constants. 

In the second method, the transformation of u fixes the values of the 

constants and thus avoids iteration, whereby the computation is reduced 

considerably. The description of the method will be given 

By making use of Eq. (2. 24), Eq. (2.  23)  can be written 

l i  pi t 1) 
r 2  

I U i  = 

4 r  1 

where 

ffi 

C y .  I J  = 1 hyj (tj u j  ( r )  d r .  ( 3 . 2 )  

We introduce the functions vi and u:' that a r e  solutions of the following 

differential equations 
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+ 2 8  ( i ,  k) g:'. 

Then ui is  given by the following expression 

( 3 . 4 )  

Eq. ( 3 .  5) can be verified by multiplying Eq. ( 3 . 4 )  by CLl, summing over 

k ,  I and v ,  and adding to  Eq. ( 3 . 3 ) ,  where upon Eq. ( 3 .  1) results.  

Substitution of Eq. (3. 5) in Eq. ( 3 .  2) gives 

i ,  j = 1 , 2 , 3 , 4 ;  p = 1 , 2  f o r  i = j = 3 and i = j = 4; /L = 1 otherwise,  

where A:!' and Byj are  defined by 

dr drI* ( 3 . 7 )  
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The numerical integration is carr ied out by integrating Eqs. (3.3) 

and ( 3 . 4 )  by any standard method, calculating A:;' and BYj by Eqs. (3. 7) 

and, finally, solving the system of 18 algebraic equations given by Eqs. 

(3. 6) to find C l l .  With the known values of these constants the integra- 

tion of Eqs. ( 3.1 ) is  straightforward. 

The determinaiiiofEqs. (3 .  6 )  becw-nes singular for  L = 0 and 1. This 

is shown in Appendix 111. a r e  

chosen arbi t rar i ly ,  and the r e s t  of the CLz a r e  found in t e r m s  of the chosen 

To remove the singularity, some of the CLr 

ones. 

B. Solut-an at  the Origin 

In order  that the four soltuions of u be independent of each other we 

must  have 

C j  u i j  f 0 ,  i = 1, 2, 3, 4, 
j -1 

( 3 . 8 )  

where C, a r e  some constants. A necessary condition fo r  this to be 

satisified is that the determinant of Eq. (3. 8) be nonzero, 

It is not difficult to see that this also is  a sufficient condition. At the 

origin the solution u i j  can be expressed as power se r i e s  in r ,  

si t v  
ayj r , 

(3. 10) 
v=o 
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where aYj a r e  the coefficients of expansion, and si a r e  given integers 

fo r  each component of u and a r e  fixed by the behavior of Eq. (2.23) 

a t  the origin. W e  can satisfy Eq. (3. 9) a t  the origin by having 

I I  a;j l I  # 0. (3.11) 

By choosing suitable values of a:j, subject to the restriction (3. I l ) ,  

four independent solutions a r e  obtained. 

C. Solution at  Large r 

With given initial values the solution of Eq. ( 2 .  23) can be extended 

from origin to any desired value of r .  

asymptotic amplitudes and the phase shifts, the presence of the 

centrifugal and long range potentials make i t  necessary  to extend 

the solutions to infinity. This i s  undesirable because of the t ime 

consumption on the computer, 

the long range integration. 

long range potentials occuring in the off diagonal t e r m s  of the r-  2 

potential matrix V by diagonalizing the asymptotic form of the dif- 

ferential  equations (2. 23) and the corresponding S matrix.  By an 

inverse transformation the elements of the original S -mat r ix  a r e  

found. 

In o rde r  to obtain the 

and the accumulated e r r o r  due to 

S e a t ~ n ~ ~  has solved the problem of 

Instead, w e  develop here  a perturbation theory which is based 

on the method described by Mott and Massey.28 The e r r o r  in the 
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resulting solution is inversely proportional to the squared of the 

distance from the origin. 

Eq. (2.  23) for  large distances of r can be written 

(3. 12) 

where U is the sum of the centrifugal potentiai matr ix  and the asyzp to t i c  

f o r m  of the V matrix. The elements of U a r e  given in Appendix IV. 

A component of Eq. (3. 12) is of the following form: 

(3. 13) 

J g ( r )  << k Z  u ( r ) ,  g(r) - 0  as r 

The perturbation theory is applied between some large distance R and 

infinity. Suppose u vanishes at R, then we have the following boundary 

condition 

u(R) = 0 .  (3. 14) 

If we represent the solution of the homogenous equation by y ( r ) ,  a t  

infinity we must have 

y ( r )  = a s i n  ( k r  - kR) 

u ( t ) = ( a  t A a ) s i n ( k r - k R t T )  
(3. 15) 

where A A  and 77 a r e  generated by g(r) . Since g ( r )  is small, we can write 
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u = y ( l  t 5 ) l  (3. 16) 

where 5 i s  a small  function. Substitution of Eq. (3. 16) in Eq. (3. 13) gives 

d 
dr  

where, upon double integration, we obtain 

5 = 5 g(r ')  y dr ' .  

(3 .  17) 

( 3 .  18) 

The constants of integrations a r e  fixed by the condition (3. 14) and the 

fact that U' ( R )  = y'(R). 

W e  now integrate Eq. (3. 18) by parts,  

When theintegration with respect to 

substituted in Eq. (3.17), we obtain 

is car r ied  out, and the result  is 

u ( r ) = s i n ( k r - k R )  g ( r ) c o s ( k r - k R ) d r  1 
(3.20) 

1 t cos (kr - kR) 1; 1' g(r) s i n  ( k r  - kR) d r  . 
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Comparison of the second of Eqs. (3. 15) and Eq. (3. 20) shows that 

m 

A a  =; I. g(r)  c o s  ( k r  - kR) d r  

r m  I 
1 '  I 

J T = - =  J g(r)  sin ( k r  - kR) dr  
R 

(3.21) 

to first order .  The functions g ( r )  in  the four differential equations (3.12) ' 

a r e  given by 

g i ( r )  = 2 u i j u i .  

i 

T o  f i r s t  o rder  this can be written by 

a i  U i j  sin ( k j r  - k j  R j )  
j 

(3. 22) 

(3.23) 

where Ri is the last zero  of ui with positive slope. Substitution of this 

equation in Eq. (3.21) gives 

R i  

A a i  = -c+ 5 cos ( k i r  - k i R i ) U i i  sin ( k j r  - k j R j )  dr 

i ). (3.24) 

A a i  and T~ can easily be calculated by substituting the values of 
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U.. f rom Appendix IV, integrating the resulting integrals by par ts  and 

retaining the leading terms.  

1 1  

The asymptotic amplitudes and phase shifts a r e  given by 

where a i ( R i )  and S i ( R i )  a r e  the amplitudes and total phase shifts calcu- 

lated at  R ,  by the machine, and where 6 ( i , 3 )  and 8 ( i , 4 )  a r e  the 6 

function s . 

D. Details of the Numerical Integration 

M i l n e ' ~ ~ ~  method with variable mesh size and Simpson's30 rule were 

used fo r  the integration of the differential equations and evaluations of the 

integrals respectively. As the solution advances from the origin, the 

differential equations become less  sensitive to the size of the increment, 

and the e r r o r  of integration falls  below certain small  number E .  

value of r the value of the function is found, first with the given value of 

the increment, and second with the value of increment divided in half. 

The e r r o r  of integration is defined a s  the difference between these two 

At each 
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solutions. 

a maximum value is reached. 

potentials and, similarly, all the direct potentials except those represent- 

ing optically allowed transitions and the 2p - 2p elastic scattering potential 

become vanishingly small. (See Appendix iv. At this distance the 

set  of differential equations is replaced by the simpler set  con- 

taining only these potentials. The integration is continued until some 

distance R,,  where the first order  solution of the r e s t  of the range of 

integration is obtained by the method developed in Sec. IIIG. N o  

attempt was made to solve any set  of l inear equations o r  any matr ix  

equations, a s  these equations are solvable by the computer in their 

original form. 

When the e r r o r  becomes small the increment i s  doubled until 

At some distance R ,  all the exchange 

The values of the constants of the numerical integration a r e  given 

hi and h, a r e  the initial and the final increment of integration. below. 

In some exceptional cases,  different values were used. 

Table 111. I 

h i  l x  

h,  0 . 0 5  . 

E 1 x 

R l  30 

R2 200 

All quantities a r e  in units of Bohr radius except E which is dimensionless. 
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IV. RESULTS 

The four differential equations l is ted in Appendix I 

were integrated by the methods described in Sec. 111. Based on the 

Eqs. (2.41), (2.37) and (2.36) we define the three relationships, 

k i  a im a i ,  s i n  (Sim - Sin) 
i = l  

(4.1) 

(4.2) 

(4.3) 

In an exact solution of the four differential equations the right-hand side 

of these equations should vanish, they can therefore be used to tes t  the 

accuracy of the numerical  integration. As an i l lustration the numerical  

values of D,,, D:,, and D'k for the case of 1s-2s-2p eigenstates coupling, ,d = +1, 

k ,  = 2.0 and L = 3 will  be given below 

k i  aim a i ,  I s i n  ( S i m  - Sin)[ 
i r l  

m,n = 1, 2, 3, 4, m I n ,  

m, n = 1, 2, 3, 4, m # n, 

m = 1, 2, 3, 4. 
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= 2.6 x 10-4, D,, = 1.3 x 10-3 D13 D,, = 1 . 4  x 10-3, 

D,, = 5.1  x 10-4, D,, = 2.2 x 10-3, D,, = 1.8 x 10-3 

D ; ~  = 7.6 x 10-4 ,  D i 3  = 5.1 x D;, = 5.6 x 

When L is la rge ,  particularly a t  the threshold, the c ros s  sections a r e  

smal l  and the values of these c ross  sections a re  more sensitive to the 

e r r o r s  in  the numerical  integration. As a resul t  the D values become 

large.  In the tables that follow, except for a few cases ,  the c r o s s  

sections that a r e  l isted have maximum D values less  than 1%. In the 

exceptional cases  by combining different independent sets  of solutions 

and different mesh  s izes  it has been assured  that the c ros s  sections 

l isted a r e  accurate to within a few units in their  las t  significant 

figures. 

The c ross  sections listed in  the tables a r e  obtained by averaging 

the values of c ros s  sections from two independent sets  of solutions of 

the four differential equations. These independent solutions a r e  

obtained by choosing two different values for the determinant (3.1 1). 

For smal l  values of k, a maximum mesh  size of 0.1 in Bohr radius is 

used while for large values of k, this mesh  size is 0.05. It is believed 

that within the framework of the present formalism the c r o s s  sections 

a r e  accurate within one o r  two units in their  l as t  significant figures. 
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Corresponding to the three channels I s ,  2 s  and 2p,  the c ross  

section matrix is  a 3 x 3 matrix. By Eqs. (2 .32)  and (2 .37 )  the excita- 

tion c ross  sections 2 s + l s ,  2 ~ 4 1 s  and 2 p + 2 s  can easily be found in 

terms of the excitation c ross  sections l s + 2 s ,  l s + 2 p  and 2 s - 2 ~ .  

The excitation c ross  section 2 s + 2 p  i s  quite large and should be calcu- 

lated by taking into account the energy difference between the levels 

2S,,,, 2P1,, and 2P3,,. The summation over partial  c ross  sections does 

not converge for this transition and the method of partial  wave is not 

useful. The Born calculation of this c ross  section is given by S e a t ~ n . ~ '  

In the 5 tables that follow the excitation c ross  sections 1s - 2 s ,  1 s  - Zp, 

and the elastic scattering c ross  sections 1 s - l s ,  2 s - 2 s  and 2 p - 2 p  a r e  

given. The l s - 2 s ,  l s - 2 p ,  a n d l s - 2 s - 2 p  eigenstates coupling approxima- 

tions correspond respectively to the inclusion of the I s ,  2 s ;  l s , 2 p  and 

I s ,  2 s ,  2p hydrogen eigenstates in the total wave function. The case P = 0 

corresponds to the neglect of the exchange terms i n  the 1 s - 2 s - 2 p  eigen- 

state s coupling. 

. 

To find the contribution of the higher par t ia l  waves whose c ross  

sections a re  difficult to calculate by the method of eigenstate expansion, 

we use the regular partial  wave Born approximation. Although the 

partial  wave Born approximation as  defined by S e a t ~ n , , ~  in which the 

continuity of current is satisfied, agrees  better with eigenstate expan- 

sion calculation for particular elements of the c ros s  section matr ix ,  this 

is not t rue  in general. As a result ,  for the sake of consistency, we calculated 

the contribution of higher partial  waves through regular Born approximation. 

The cross  sections corresponding to the 5 tables a r e  plotted in the 

5 figures. 
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V. DISCUSSION 

(i) The resul ts  of numerical  integration using noniterative method 

agrees with the iterative numerical  integration of Burke, Smith and 

Schey,’a3* although the two results are different sometimes by a s  much 

as  10%. The difference between the two methods i s  large when the 

c ross  section is small. 

(ii) Is-2s excitation c ross  section. A s  is seen from Fig. 1 ,  the 

1 s - 2s and the 1 s - 2s  - 2p eigenstates calculations a r e  in good agreement 

with the experimental results of Lichten and Schultz’ although the 

calculations do not give the sharp peak in the c ross  section at the 

threshold a s  is observed experimentally. The shape of the exchange 

neglected 1 s - 2 s  -2p eigenstates calculation curve i s  in excellent agree- 

ment with the shape of the experimental curve. The two curves coin- 

cide beyond 25 ev. We notice that the Born approximation agrees with 

the eigenstate expansion calculations for values of bombarding 

energies close to the threshold. The normalization of the experimental 

resul ts  in reference (1) to the Born approximation a t  45 ev appears 

therefore to be justified. 

(iii) Is -2p excitation c ross  section. The experimental curve3 

agrees  in shape with the calculated curves but i t  is lower than al l  of 

them (cf. Fig. 2). It should be noted that the inclusion of the 2 s  state 

in the 1 s  - 2p excitation cross  section calculation increases this 

c ros s  section. 

Since the experimental curve of Stebbings e t  al. in  Fig. 1 is  

normalized according to the experimental curve in Fig. 2, i f  in a new 

measurement  of the 1 s - 2 p  transition c ross  section higher values for 

the c ros s  section is found, the two experimental  curves in Fig. 1 will  

be brought into better agreement. 
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(iv) 2s-2s elastic c ross  section. The c ross  section at the thresh- 

old is large. A Ramsauer  effect is evident in the L = 0 case (cf. Table 

N) 

(v) 2p-2p elastic c ros s  section. The c ross  section at the threshold 

i s  considerably larger  than 2s-2s elastic c ros s  section. The Born 

approximation agrees  with the eigens tate expansion calculations a t  higher 

energies,  This c ross  section is not calculated in  reference 32. 

(vi) Although we have neglected the spin orbit interaction we have 

investigated the role that spin plays in electron atom collision. Assum- 

ing that electrons a r e  identical but spinless par t ic les ,  the total wave 

function should be symmetr ic  with respect to the coordinate interchange 

of the two electrons. The curves 1s-2s-2p symmetr ic  in the 5 figures 

correspond to such a wave function. The disagreement between theory 

and experiment is an indication of the important role the antisym- 

me t ry  property of the total electron wave function plays in the free 

bound electron collisions. 

(vii) A study of the 5 figures shows that the Born approximation, 

despite i ts  simplicity, agrees  with eigenstate expansion calculations for 

low and close to the thresholds bombarding electron energies. Of 

particular interest  is the fact, yet unexplained, that the Born approxi- 

mation underestimates some c ross  sections and overestimates others. 

VI. CONCLUSION 

The hydrogen eigenstate expansion of the total wave function of 

the system of a free electron in collision with a hydrogen atom seems 

to be the most natural expansion in any par t ia l  wave calculation. The 
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formalism can easily be extended to the electron impact atomic hydro- 

gen excitation c ros s  section calculation higher than n = 2, and to the 

electron impact excitation c ros s  section of any hydrogenic atom 

whose central  potential field is given by a potential such a s  Hartree o r  

Hartree Fock potentiais. Where the Born approxiriation h e s  E& give 

accurate resul ts  the eigenstate expansion seems a t  present to be the 

most  suitable method. 

In addition the treatment of the angular momentum a s  described 

here  is the same for any system of one free and two bound particles 

with radial  interacting forces ,  and the formalism developed here  can 

be applied to such problems. 

We conclude that the Born approximation can be used with more 

reliability in electron impact atomic excitation c ross  sections. 

Finally, it is believed that the noniterative technique employed 

here  to solve the radial  differential equations wil l  find more  

applications in problems containing exchange integrals. 
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APPENDIX I 

The Four Differential Equations 



[z2+k: d 2  - L ( L t l )  t 21 u ( k , L ,  r )  r 2  r 

- 2  [ 3( 2L L t l  t 1 ) ] 1 / 2 y 1 ( 2 ~ 2 p , r ) u ( k 2 L t l . r )  

r R 2 1 ( r ) Y L + 1  ( 2 s k 2  L t 1 ,  r )  1 l l 2  

3 ( L + 1 )  
- 2 P  [ 

(2L + 1) (2L + 3)' 

41 



[p d 2  t k: -(L-l)Ltz] u ( k , L - 1 ,  r )  
r2 r 

) ' L o y 2  ( 2 p 2 p ,  r )  u ( k 2 L t  1 ,  r )  
- 5  2 L t 1  

6PI'L(L ' yL ( 2p k, L t 1, r ) r R g l  ( r )  
( 2 L t q 2  
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( L t 1 ) ( L t 2 )  t 2  u ( k 2 L t 1 ,  r )  dr' t k ,  - r' -1 r 
-d2 - 

y l ( l s 2 P ,  r) u ( k , L ,  r )  - 2 

+ 2  

- 2P  

- 2P  

rR10 ( r )  YL+l ( 2 P k  1 L ,  r )  1 1'2 

3 ( L  t 1) 
1) ( 2 L t  3)2 

rR20(r)YLcl(2Pk'L? r )  1 l'' 3 ( L +  1) 
(2L  t 1) (2L  + 3)' [ 

rRzl (r)  Yt ( 2 p k , L -  1 r) - 6PfL(L+l )  
(2L t l)* 
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APPENDIX I1 

Elements of the Potential Matrix 
Elements of Dij: 

- [+ t; ti t 6 I e - r  t 2 L t 1  [ -  -(? t- 1 1  t -  t - 1 r  t- t 2) e-.] 6(L t 2) 
r3 r2 2 r  6 2 4  1 4 4  E44 - - 

3 

Dl 2 = D2, = 9 (. $)e-" 

3r 
l 2 8 f i  L t 1  D,, =D41 - - - 243  (2Lt . l )  'I2 [$- (5 

D,, = D43 =-18 [ L ( L ~ I ) ] ~ "  [.I~ - - ( 1  - t - I + E  1 t 5 1 t 3 r t m) r2 e-'] 
( 2 L t  1)2 r3 r2  

Elements of Fi j: 
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F23 =l&p [ ( 2 L t 1) L ( 2 L -  1)2 I l l 2  P rL- 1 

L t 1  
( 2 L  t 1) ( 2 L  t 3)2 

F2, = - f i p  
1 / 2  [g 

F,, = - 3 p [  L ( L t  1) ] x R , ,  rlLtl dr '  - R 2 1  rLtl [ 2 dr] 
( 2 ~  t 114 

Elements of gi and hi : 
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3 , 8 R 2 1  rL+’ R 2 1  , hi3 = - 
r L  

1 

( 2 L -  1) ( 2 L  t l)? 
g 3 3  = 

1 ,L+1 1 
3PR2,  

9 h:4 = R z l  1 yL -- 
s:, = ( 2 L t 3 )  ( 2 L +  1)? 2 

2 3 p ( L t 2 ) R 2 ,  rL+3  - R21 
g44 = ( 2 L t 3 ) ( 2 L t 5 ) ’ h : ‘  -yL+2 

1 l t k i  
R21  r L ’  h 1 3  = R I O  [p - 7 L 

1) ( 2 L -  
g 1 3  = 6 p  

g 3 1  = g13 [ R 2 1 + R 1 0 ]  ’ h 3 1  = h 1 3  [ R 1 0 + R 2 1 ]  

c4l = g14 [ R 2 1 + R 1 0 ]  ’ h 4 1  = h14 [R10+R21]  
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I g 3 2  = g 2 3  [ R 2 1 + R 2 0 ]  ' h 3 2  = h 2 3  [ K 2 0 + R 2 1 ]  

R 2 0  
> h 2 4  = - r L t l  g 2 4 -  -- d 3 p  R 2 ,  rL+2 

g 4 2  = g 2 4  [ R 2 1 + R 2 0 ] ,  h 4 2  = h 2 4  [R20*R21] 

R 2 1  

( 2 ~ t  q4 r L  

1 / 2  

1 h,, = - g 3 , = - 3 8 [  L ( L + l )  ] R 2 ,  rLtl 

g 4 3  = g 3 4  

J 

In F i j  matrix the interchange of the functions R l o ,  R2, and R2,  

accompanies the interchange of their  arguments too. 
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APPENDIX 111 

Singularity of the Determinant of Eq. (3.6) 
for L = 0 and 1 

(1) L = O  Case. By making use of the definition of D,, and F,, and 

Eq. (3.7) the following relationship can be derived from Eq. (3.3) 

jw L R , ,  (" d r2 t k:) v, - B r R , , ( X  dr  t k:) v,]dr 
0 

where 

(D 

a13 =l R , , R , ,  r 3 d r  =[215 x 3-9]'i 

W 

a,, -1 R,, R,, r 3 d r  = - 3 fi 

Integrating the left-hand side of Eq. (A5) by parts, and making use of 

Eqs. (2 .  11)  and (3 .  7) we obtain 

We conclude 

= - 2[B,, -PB1, ] .  



Therefore a l l  the elements on the right-hand side of Eqs. (3 .6 )  a r e  not 

independent. In order  that these equations be consistent one of them 

should be a l inear combination of others.  By making use of the f i r s t  of 

Eqs. (3.7) it  can be shown directly that equations similar to Eq. (A7) 

hold among the elements of each row of the determinant of Eqs. ( 3 . 6 ) .  

L = 1 Case. Similar to the previous case the following r e l a -  (1 1) 

tionship can be derived from Eqs. (3 .3 )  

where 

m 

a 3 3  = 1 R i ,  r 4 d r  = 3C 

Integrating the left-hand side of Eq. (A8) by par t s ,  and making use of 

Eqs. (2.  11) and (3. 7) we obtain 
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Combining Eqs. (A8) and (A9) we get 

B 3 1 - P B 1 3  = T  1 p a 1 3 B 1 1  t P a 2 3 B 1 2  t fi ( B " B " - ~ P ' ~ ~ B I ~ ) ]  3 (A1O) 

Finaliy, E q s ,  (3.3) give the following relationship 

Integration by par ts  of the left-hand side a s  before 

= - 2[B3, - P B 2 3 ]  , 

whereupon we get 

To remove the singularity in L = 0 case one of the CL' is chosen 

arb i t ra ry ,  and a degenerate equation is removed from Eqs. (3.6). Simi- 

la r ly  in L = 1 case two of the CLl a re  chosen arb i t ra ry  and two degenerate 

equations a r e  removed from Eqs. (3.6). 
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APPENDIX IV 

Elements of the Matrix of the Sum of the Asymptotic Coulomb and 

Centrifugal Potentials 

U,, = L ( L  t 1 ) r m 2  , U,, = L(L t 1 )  r- ,  

u,, =Uzl = 0, u,, = U,, = [256fi/243] [L/(2L+1)]Ur-2 

U,, = U,, = - [256f i /243]  [(L t 1)/(  2L t 1)]* r-', U23 = U32 = - 6 [L/( 2L t I)]  w f 2  

U,, = U,, = 6 [(L t 1)/(2L t l)] w f 2 ,  U,, = U,, = - 3 6  [L(Lt1) l ' / 2  ( 2 L + 1 ) - ' r w 3  
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TABLES OF CROSS SECTIONS 

In the following five tables the partial and the total c ros s  sections 

for the processes  i s -2s ,  i s - zp ,  15-13 ,  2 s - 2 s  and 2p-2p in different 

approximations a r e  l isted.  

a given total orbital angular momentum L which appears a t  the head 

of each column. E ,  is the sum of the singlet and z T i s  the sum of the 

triplet partial  c ros s  sections within certain approximation and for a 

given electron energy. 

the eigenstates coupling, Born approximation is used to add the contri- 

bution of the partial  waves 

computed within the given eigenstate s coupling approximation. 

contribution can easily be obtained by using the given table of the Born 

approximation of the partial  and the total c r o s s  sections. kl i s  the wave 

number of the electron beam incident on the ground state of the atom and 

k2 i s  the wave number of thesame beamwhen atom is in i t s  f i r s t  excited 

state. 

Each partial c ros s  section corresponds to 

Q, is the total c r o s s  section, and in the case  of 

beyond the maximum L which has  been 

This 

The energy of the beam is given in electron volt through 

E = 13.6 k2, 

where k can be kl o r  k2. 

of the orbital angular momenta of the bound and the free electrons 

respectively. 

In Table V ,  l 1  and l 2  a r e  the quantum numbers 
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TABLE I. 1s -2s  Excitation Cross  Sections 

L = l  

- 
k l  - 

0.9 
1.0 
1.1 
1.2 
1.5 
2.0 
3.0 
4.0 

0.9 
1.0 
1.1 
1.2 
1.5 
2.0 

0.9 
1.0 
1.1 
1.2 
1.5 
2.0 

3.9 
1.0 
1.1 
1.2 
1.5 
2.0 

0.9 
1.0 
1.1 
1.2 
1.5 
2.0 
3.0 
4.0 

0.9 
1.0 
1.1 
1.2 
1.5 
2.0 
3.0 
4.0 - 

L = 2  L = 3  L - 4  L = 5  

0.00000 0.00000 0 . 0 0 0 ~ ~  
0.00026 0.00000 0.00000 
0.00125 0.00011 0.00001 
0.00299 0.00039 0.00004 
0.00939 0.00242 0.00053 
0.01365 0.00614 0.00236 
0.00866 0.00628 0.00394 
0.00431 0.00385 0.00301 

L = o  
QT L = 6  L - 7  c 

0.00000 0.00000 0.17378 0.17379 
0.00000 0.00000 0.24827 0.24827 
0.00000 0.00000 0.24622 0.24623 
0.00000 0.00000 0.22800 0.22800 
0.00010 0.00002 0.16703 0.16706 
0.00081 0.00025 0.10151 0.10187 
0.00226 0.001 16 0.04546 0.04758 
0.00216 I 0.00141 0.02337 0.02720 

0.0749 
0.1427 
0.1142 
0.1137 
0.0861 
0.0373 

1 

0.3535 
0.1598 
0.0298 
0.0032 
0.0201 
0.0255 

0.16376 
0,19578 
0.16272 
0.12704 
0.05872 
0.01946 
0.00388 
0.00123 

L = 3  

0.0000 
0.0000 
0.0000 
0.0002 
0.0022 
0.0041 

0.0098 1 
0.04795 
0.07073 
0.07896 
0.06606 
0.03363 
0.00909 
0.00320 

L = 4  L = 5  L = 6  L = 7  2, 

0.0000 0.0000 0.0000 0.0392 
0.0000 0.0000 0.0000 0.1310 
0.0000 0.0000 0.0000 0.1249 
0.0000 0.0000 0.0000 0.1137 
0.0004 0.0001 0,0000 0.0762 
0.0015 0.0005 0,0002 0.0385 

0.00021 
0.00428 
0.01141 
0.01858 
0.02979 
0.02521 
0.01019 
0.00420 

L = O  

0.0523 
0.0768 
0.0585 
0.0382 
0.0123 
0.0049 
0.0010 
0.0003 

B. Exchange Neglected 1 s  -2s -2p Eigenstates Coupling Approximation 

L = l  L = 2  L = 3  L = 4  

0.0048 0.0620 
0.0147 0.0833 0.0092 
0.0245 0.0647 0.0236 0.0055 
0.0251 0.0246 0.0252 0.0081 
0.0308 0.0015 0.0041 0.0051 
0.0152 0.0068 0.0021 0.0010 
0.0031 0.0031 0.0023 0.0015 
0.0010 0.0012 0.0012 0.0010 

0.0023 
0.0011 
0.0005 

0.0026 
0.0008 
0.0006 

L = o  L = l  I L = 2  I L = 3  c QT 

0.2202 
0.1685 
0.0951 
0.0594 
0.0249 
0.0101 

0.6486 
0.5227 
0.3238 
0.2502 
0.1683 
0.0949 

0.6486 
0.5227 
0.3238 
0.2502 
0.1683 
0.0953 

0.0517 
0.0616 
0.0360 
0.0068 
0.0107 

0.0231 

C. 1s -2s  Eigenstates Coupling Approximation I 
Singlet 1 - 

L - 0  

__ 
L = l  

0.0017 
0.0583 
0.0525 
0.0534 
0.0384 
0.0157 

- 

- 
L = 2  

0.0375 
0.0725 
0.0701 
0,0547 
0.0241 
0.0072 

0.0000 
0.0002 
0.0023 
0.0054 
0.0110 
0.0093 

Triplet  
- 

L - 5  L = o  

0.0004 
0.0021 
0.0044 
0.0061 
0.0073 
0.0049 

- L = 2  L = l  

0.0060 
0.0446 
0.0568 
0.0576 
0,0406 
0.0205 
- 

0.0000 
0.0000 
0.0000 
0.0002 
0.0012 
0.0032 
- 

0.1686 
0.1528 
0.1052 
0.0737 
0.0355 
0.0162 

0.0000 
0.0000 

0.0002 
0.0012 

D. 1s-2s-2p Eigenstates Coupling Approximation 

L = 5  1 L = 6  1 L = 7  2 ,  

0.1191 
0.1840 
0.1768 
0,1240 
0.0621 
0.0329 
0.0130 
0.0055 

0.0028 
0.0034 
0.0010 
0.0009 
0.0008 

QT 
L = 2  1 L = 3  L = 4  L = 5  L = 6  L = 7  7- X T  

0.0780 
0.1673 
0.1597 
0.1355 
0.0951 
0.0574 
0.0288 
0.0132 

0.1971 
0.3513 
0.3366 
0.2596 
0.1573 
0.0903 
0.0418 
0.0187 - 

0.1971 
0.3513 
0.3366 
0.2596 
0.1573 
0.0907 
0.0439 
0.0261 

0.0019 
0.0195 0.0214 
0.0326 0.0077 
0.0359 0.0036 
0.0309 0.0072 

0.0131 
0.0105 
0.0046 
0.0044 
0.0044 
0.0027 

0.0076 
0.0054 
0.0025 
0.0029 
0.0022 
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TABLE 11. Is-Zp Excitation C r o s s  Sections 

L = 3  

0.01025 
0.13467 
0.24992 
0.29903 
0.23775 
0.09386 
0.01537 
0.00359 

- 
k l  - 

0.9 
1.0 
1.1 
1.2 
1.5 
2.0 
3.0 
4.0 

0.9 
1.0 
1.1 
1.2 
1.5 
2.0 

0.9 
1.0 
1.1 
1.2 
1.5 
2.0 

0.9 
1.0 
1.1 
1.2 
1.5 
2.0 

0.9 
1.0 
1.1 
1.2 
1.5 
2.0 
3.0 
4.0 

0.9 
1.0 
1.1 
1.2 
1.5 
2.0 
3.0 
4.0 - 

L . 4  L = 5  L = 6  

0.00087 0.00007 0.00001 
0.03964 0.01032 0.00254 
0.11533 0.04649 0.01753 
0.17908 0.09269 0.04453 
0.21386 0.16292 0.11291 
0.11287 0.11376 0.10248 
0.02309 0.02920 0.03271 
0.00586 0.00816 0.01009 

L = 3  

1 

L =  1 

L.4 L = 5  L - 6  L = 7  

L = 2  

0.2190 0.0476 0.0224 
0.3696 0.1380 0.0586 0.0166 
0.3922 0,2044 0,1014 0.0403 
0.2568 0.2295 0.1706 0.1136 

c 
0.56534 
1.03787 
1.22158 
1.27961 
1.09696 
0.59065 
0.14449 
0.04142 

1.5004 
1.5017 
1.3937 
1.0082 
0.4700 

L = O  

0.00107 
0.00499 
0.00702 
0.00747 
0.00550 
0.00234 
0.00048 
0.00013 

1.5041 
1.5150 
1.4416 
1.2645 
1.0036 

1=7 

0.00000 
0.00059 
0.00624 
0.02004 
0.07232 
0.08374 
0.03273 
0.01114 

QT 

0.57535 
1.03851 
1.22859 
1.30741 
1.28101 
1.0405 5 
0.66256 
0.45252 

0.46700 
0.48867 
0.36207 
0.25540 
0.09184 
0.02222 
0.00285 
0.00066 

0.09607 
0.35645 
0.41698 
0.38137 
0.19986 
0.05938 
0.00806 
0.00179 

B. Exchange Neglected 1s-2s-2p Eigenstates Coupiing Approxim;ticr 

L = O  [ L = l  L = 2  

0.6497 
0.8190 
0.6201 
0.4481 
0.1671 
0.0394 

C. 

Singlet 

L = O  

0.0044 
0.0168 
0.0299 
0.0296 
0.0059 
0.0010 

0.2682 
0.4156 
0.5883 
0.5830 
0.3386 
0.1376 

Triplet 
c, t c, 

0.4755 
0.7471 
0.9703 
1.0050 
0.7652 
0.3820 

QT 

0.4867 
0.7508 
0.9836 
1.0529 
1.0215 
0.9156 

L = O  L = l  L = 2  

0.0002 0.2066 0.0005 
0.0016 0.1078 0.0020 
0.0037 0.0540 0.0060 
0.0055 0.0249 0.0098 
0.0059 0.0027 0.0133 t 0.0028 0.0002 0.0073 

L = 3  L = 4  

0.1651 0.0363 
0.1599 0.1002 
0.1446 0.1336 
0.0868 0.1231 t 0.0311 0.0559 

L = 7  2, 

0.2073 
0.3315 
0.3820 
0.4220 
0.4267 
0.2445 

0.0187 

D. 1 s-2s-2p Eigenstates Coupling Approximation 

Singlet 

Triplet  

L a 0  L = l  L = Z  2, 

0.2162 
0.4375 
0.6239 
0.6189 
0.3964 
0.1731 
0.0396 
0.0047 

0.0390 
0.0360 
0.0358 
0.0345 
0.0172 
0.0036 
0.0004 
0.0001 

0.0745 
0.1123 
0.1094 
0.0806 
0.0175 
0.0023 
0.0002 
0.0001 

0.1027 
0.2575 
0.3405 
0.2912 
0.0953 
0.0170 
0.0015 
0.0003 

0.0317 

QT 1 
L =o L =1 L = 5  

0.0007 
0.0033 
0.0070 
0.0096 
0.0107 
0.0053 
0.0010 
0.0002 

0.0682 
0.0801 
0.0626 
0.0418 
0.0131 
0.0038 
0.0006 
0.0002 

0.0112 
0.0500 
0.0567 
0.0537 
0.0351 
0.0143 
0.0025 
0.0006 

0.0801 
0.3064 
0.4799 
0.5282 
0.5608 
0.3363 
0.0870 
0.0105 

0.1730 
0.0404 
0.0729 
0.1157 
0.0731 
0.0175 
0.0048 

0.0209 
0.0332 
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TABLE 111. 1s-1s  Elas t ic  C r o s s  Sections 

0.00379 
0.00587 
0.00835 
0.01109 
0.01955 
0.02924 
0.03013 
0.02291 

k l  

0.00013 
0.00027 
0.00049 
0.00082 
0.00241 
0.00621 
0.01131 
0.01145 

A. Born  Approximation 

0.1916 
0.0890 
0.0483 
0.0346 
0.0310 

0.0157 
0.0309 
0.0299 
0.0248 
0.0135 

L = O  

0.4324 
0.2824 
0.1865 
0.1397 
0.0905 
0.0608 

E ,  L = l  L = 2  L = 3  L = 4  L = 5  L = 6  L = 7  

0.0382 0.0015 0.0000 0.0000 0.0000 0.0000 0.4721 
0.0338 0.0014 0.0001 0.0000 0.0000 0.0000 0.3177 
0.0199 0.0011 0.0001 0.0000 0.0000 0.0000 0.2076 
0.0111 0.0006 0.0001 0.0000 0.0000 0.0000 0.1515 
0.0012 0.0001 0.0000 0.0000 0.0000 0.0000 0.0918 
0.0083 0.0016 0.0003 0.0001 0.0000 0.0000 0.0711 

L = l  L = 2  

1.394 0.0477 
1.162 0.0579 
0.9654 0.0651 
0.8085 0.0696 
0.4857 0.0727 
0.2366 0.0627 

L = 3  

0.0016 
0.0023 
0.0036 
0.0050 
0.0092 
0.0142 

L = 4  

0.0001 
0.0001 
0.0002 
0.0004 
0.0011 
0.0031 

=T L = 5  L = 6  L = 7  

0.0000 0.0000 5.127 
0.0000 0.0001 4.125 
0.0000 0.0000 3.331 
0.0000 0.0000 2.713 
0.0001 0.0000 1.5404 
0.0006 0.0001 0.7215 

L = 2  I L = 3  c L = o  L = l  QT 

1.75233 
1.54167 
1.35968 
1.203 18  
0.85389 
0.52267 
0.24700 
0.14194 

1.651 13 
1.42354 
1.22728 
1.05936 
0.69 140 
0.36283 
0.12662 
0.05565 

0.09722 
0.11 192 
0.12348 
0.13181 
0.14017 
0.1 2285 
0.07286 
0.041 9 5 

1.75227 
1.54161 
1.35963 
1.20314 
0.85384 
0.52265 
0.24681 
0.14131 

0.9 
1.0 
1.1 
1.2 
1.5 
2.0 
3.0 
4.0 

0.9 
1.0 
1.1 
1.2 
1.5 
2.0 

0.9 
1.0 
1.1 
1.2 
1.5 
2.0 

0.9 
1.0 
1.1 
1.2 
1.5 
2.0 

B. Exchange Neglected 1s-2s-2p Eigens ta tes  Coupling Approximation 

L =  0 L =  1 

2.632 
2.091 
1.694 
1.390 
0.8181 
0.4053 

0.3300 
0.2518 
0.2302 
0.2228 
0.2032 

0.0016 
0.0019 
0.0027 

0.1742 10.0494 I 0.0181 I0.0108 10.0036 10.0027 I 

'S "T QT 
L= 0 

3.684 
2.903 
2.297 
1.829 
0.9716 
0.4042 

5.599 
4.443 
3.539 
2.864 
1.632 
0.7926 

5.599 
4.443 
3.539 
2.864 
1.632 
0.7926 



T A B L E  111. Continued 

1 s -2p  E i g e n s t a t e s  Coupling A p p r o x i m a t i o n  D. 

0.2984 
0.2148 
0.1569 
0.1040 
0.0698 

kl  

0.0167 
0.0108 
0.0048 
0.0008 
0.0138 

0.0635 
0.0578 
0.0338 
0.0035 
0.0030 

T L Z -  

0.0073 0.0017 
0.0104 0.0026 
0.0105 0.0030 
0.0038 0.0025 
0.0018 0.0018 

L = 3  

0.0136 
0.0152 
0.0142 
0.0139 
0.0152 
0.0256 

L = 4  L = 5  L = 6  

0.0054 0.0019 0.0015 
0.0066 0.0025 0.0011 
0.0069 0.0031 0.0015 
0.0063 0.3031 0.0019 
0.0111 0.0030 0.0019 

5.682 
4.638 
3.749 
3.031 
1.735 
0.9045 

5.682 
4.638 
3.749 
3.031 
1.735 
0.9045 

L = O  L = l  L = 2  L = 3  L = 4  L = 5  

0.9 
1.0 
1.1 
1.2 
1.5 
2.0 

0.9 
1.0 
1.1 
1.2 
1.5 
2.0 

0.9 
1.0 
1.1 
1.2 
1.5 
2.0 
3.0 
4.0 

0.9 
1.0 
1.1 
1.2 
1.5 
2.0 
3.0 
4.0 

0.0006 
0.0008 
0.0011 
0.0012 
0.0008 

0.0005 
0.0003 
0.0005 
0.0007 
0.0006 

0.3887 
0.2975 
0.2106 
0.1165 
0.0916 

QT 'S "T 
L = O  L =  I L = 2  

3.689 
2.914 
2.309 
1.840 
0.9806 
0.4184 

1.421 
1.236 
1.036 
0.8702 
0.5249 
0.2702 

0.0682 
0.0758 
0.0814 
0.0850 
0.0863 
0.0828 

5.192 
4.250 
3.451 
2.821 
1.618 
0.8130 

E. s -2s  -2p E igens t a t e s  Coupling Approximat ion  

L =  7 L = 6  

0.0007 
0.0004 
0.0005 
0.0007 
0.0004 
0.0002 

0.4503 
0.2649 
0.1736 
0.1283 
0.0854 
0.0591 
0.0266 
0.0133 

0.0133 
0,0100 
0.0131 
0.0102 
0.0021 
0.0093 
0.0138 
0.0106 

0.0457 
0.0660 
0.0582 
0.0351 
0.0049 
0.0016 
0.0052 
0.006 1 

0.0058 
0.0076 
0.0104 
0.0104 
0.0042 
0.0009 
0.0019 
0.0034 

0.0000 
0.0019 

0.0030 
0.0025 
0.0007 
0.0008 
0.0020 

0.002a 

0.5151 
0.3518 
0.2594 
0.1887 
0.1020 
0.0728 
0.0493 
0.0366 

0.0007 
0.0009 
0.0012 
0.0012 
0.0006 
0.0003 
0.0012 

0.0010 
0.0002 
0.0005 

T r i p l e t  

0.0055 
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Q T  'S "T 

6.037 
4.753 
3.772 
3.029 
1.716 
0.8061 
0.3118 
0.1867 

L = o  L = 3  'T 

5.523 
4.40 1 
3.512 
2.841 
1.615 
0.7333 
0.2625 
0.1501 

3.687 
2.908 
2.299 
1.828 
0.9697 
0.4006 
0.1127 
0.0475 

0.0166 
0.0174 
0.0166 
0.0162 
0.0166 
0.0154 
0.0156 
0.0160 

6.037 
4.753 
3.772 
3.029 
1.716 
0.806 1 
0.3120 

0.0016 
0.0012 
0.0015 



L =  0 

89.97 
05.52 
47.381 
26.562 

8.2461 
2.4331 
0.5245 
0.18794 

- 
k2 - 

0.24 
0.50 
0.68 
0.83 
1.23 
1.80 
2.87 
3.91 

0.24 
0.50 
0.68 
0.83 
1.23 
1.80 

0.24 
0.50 
0.68 
0.83 
1.23 
1.80 

0.24 
0.50 
0.68 
0.83 
1.23 
1.80 

0.24 
0.50 
0.68 
0.83 
1.23 
1.80 
2.87 
3.91 

0.24 
0.50 
0.68 
0.83 
1.23 
1.80 
2.87 
3.91 - 

QT L = 1  L = 2  L = 3  L z 4  L = 5  L = 6  L = 7  

15.910 0.27680 0.00319 0.00003 0.00000 0.00000 0.00000 406.16 406.17 
32.129 5.0152 0.55306 0.04846 0.00347 0.00022 0.00001 143.269 143.276 
24.746 7.4981 1.7023 0.31602 0.04869 0.00658 0.00078 81.700 81.703 
17.895 7.5601 2.5080 0.69820 0.16365 0.03393 0.00621 55.427 55.440 
7.6846 4.9702 2.7483 1.3500 0.57745 0.22452 0.07803 25.879 25.990 
2.7773 2.2763 1.6805 1.1541 0.71994 0.41776 0.22120 11.680 12.105 
0.71381 0.68903 0.61123 0.51876 0.41048 0.31076 0.21860 4.0011 4.8280 
0.27611 0.28658 0.27339 0.25098 0.21580 0.17946 0.14029 1.8106 2.7417 

9.004 
5.547 
4.637 
3.321 
1.750 

9.368 
4.373 
2.792 
1.797 
1.275 

0.2825 0.5370 0.5285 0.4193 0.2931 0.1863 0.1110 2.358 

L = 2  

7.713 
21.05 
12.74 
8.725 
4.008 
1.652 

L : 3  L r 4  L = 5  

0.0540 
2.776 0.2521 0.0316 
4.059 0.8282 0.1463 
3.887 1.230 0.3225 
2.585 1.399 0.6637 
1.316 0.9510 0.6359 

B. Exchange Neglected 1s-2s-2p Eigenstates  Coupling Approximation 

82.78 
65.052 
42.316 
32.226 
18.726 1 10.352 

32.02 
2.041 
2.255 
1.861 
1.716 
1.020 

8.489 
7.710 
8.247 
8.206 
4.987 
2.134 

42.26 
23.35 
15.16 
10.67 

5.030 
2.150 

82.77 
65.045 
42.312 
32.207 
18.537 
9.707 

7.702 
3.755 
2.223 
1.058 
0.8320 

5.870 
2.975 
1.818 
0.7179 
0.5457 

I I I I I I 

C. 1s  -2s Eigenstates  Coupling Approximation 

Singlet 1 
L =  0 L =  1 

0.3303 
1.532 
1.115 
0.8980 
0.5702 

8.196 

5.536 
3.512 
1.413 

10.38 
8.792 

8.279 
6.928 
4.401 

11.97 

Triplet  

L = 6  L = 7  

0.0994 
0.0442 
0.0850 
0.2862 t 0.4008 

QT 

181.31 
70.84 
45.60 
34.96 
20.03 

1 1 

4ppr oximation 

Singlet 

L =  0 L . 1  L . 2  L = 3  L = 4  

22.42 
3.149 4.447 2.925 
2.455 1.884 1.480 
2.105 0.9905 0.8282 
1.196 0.7196 0.3940 
0.5133 0.4133 0.2923 
0.1574 0.1466 0.1280 I 0.0702 0.0698 Triplet  0.0660 

L = 7  2, 

I 14.79 
0.6960 
1.044 
1.088 
1.075 
0.4974 
0.1489 
0.0635 

45.01 
15.057 

8.820 
6.347 

0.1409 4.332 
0.0799 2.3553 
0.0658 0.9223 i 0.3659 

7.800 
0.2858 
0.0661 
0.1675 
0.3739 
0.2416 
0.0847 
0.0365 

2.063 
1.098 
0.6606 
0.2496 
0.1928 
0.1057 

1.491 
0.7928 
0.5071 
0.1827 
0.1247 
0.0852 

- 

QT 

152.43 
97.213 
54.103 
36.705 
20.066 
10.427 
4.5905 
2.7306 

L = O  L = 1  L = 2  L , 3  21 

6.52a 
6.172 
2.346 
1.709 
1.391 
0.7898 
0.2622 
0.1113 

1.236 
17.19 
12.88 
9.166 
4.199 
1.656 
0.4652 
0.1945 

89.65a 
30.69 
14.52 
8.976 
3.880 
1.603 
0.4857 
0.2146 

107.41 
82.14 
45.28 
30.343 
15.622 

7.648 
2.8413 
1.1138 

152.42 
97.206 
54.099 
36.686 
19.955 
10.002 

3.7636 
1.4797 

2.90 
7.937 
5.367 
2.681 
1.291 
0.4479 
0.2122 

4.257 
2.090 
1.246 
0.5658 0.4094 
0.4305 0.2786 
0.2623 0.2045 
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TABLE V. 2p-2p Elast ic  C r o s s  Sections 

- 

6.1961 2.1260 
5.2190 2.1768 
4.0761 1.9476 
3.2062 1.6993 
1.7048 1.1013 
0.74615 8.56349 
0.22647 0.20035 

k2 

0.44497 
0.55433 

0.5 3 204 
0.44518 
Oe30158 

10.13878 

n C A O P 2  
U e J T  J U 4  

A. L-41 - &, Odd, Born Approximation 

0.08105 
0.18383 
0,18718 
0.1 8680 
0.17577 
0.14245 

36.56 
23.71 
16.923 
12.8854 

6.9237 
3.30733 

0.2516 
0.2352 
0.2352 
0.2340 
0.2208 
0.1784 

, 0.1064 

L = 5  L = 6  1=7 

L = l  L = 2 1  L = 3  L = 4  

0.92680 
1.0526 
i . O i O 0  
0.941 22 
0.709 20 
!!.424?5 
0.17178 

0.22694 
0.31476 
0.3 1 -? 28 
0.31331 
0.28212 
0.21122 
0.10926 

26.562 
14.210 
8.8346 
6.0065 
2.5053 
0.91169 
0.23647 

0.24 
0.50 
0.68 
0.83 
1.23 
1.80 
2.87 

0.24 
0.50 
0.68 
0.83 
1.23 
1.80 
2.87 

0.24 
0.50 
0.68 
0.83 
1.23 
1.80 
2.87 

0.24 
0.50 
0.68 
0.83 
1.23 
1.80 
2.87 

:change Neglected 2p Eigenstate s Coupling Approximations 

L = l  L = 2  L = 3  

1.1408 
1.1580 
1.1160 
1.0380 

0.4436 t 0.1776 

:0.7652 

0.6200 
0.6216 
0.6160 
0.5968 
0.4972 
0.331 2 t 0.1520 

L = 6  1=7 20 

74.5 2 
27.10 
17.54 
12.90 

6.776 
3.261 
1.195 

8.444 
6.884 
4.940 
3.6364 
1.7392 
0.7220 
0.2180 

2.5808 
2.5436 
2.2548 
1.9292 
1.1812 
0.5816 
0.2004 

0.3720 
0.3640 
0.3640 
0.3592 
0.3236 
0.2400 
0.1272 

61.12 
15.292 

8.008 
5.108 
2.0484 
0.7640 
0.2132 

C. L-4, - 4, Odd, 2p Eigenstates Coupling Approximation 

Singlet 

L = 5  L = 6  

0.0930 
0.0913 
0.0920 
0.0913 
0.0823 
0.0605 
0.0319 

L = 3  

0.6725 
0.7915 
0.6851 
0.5562 
0.31 15 
0.1475 
0.0503 

L = 4  

0.2861 
0.3066 
0.3025 
0.2799 
0.1991 
0.1 124 
0.0445 

L = l  1=7 

0.0629 
0.0589 
0.0590 
0.0589 
0.0558 
0.0449 
0.0267 

L = 2  

4.161 
3.182 
1.728 
1.107 
0.4603 
0.1831 
0.0547 

20, 

8.394 
8.323 
5.190 
3.619 
1.7647 
0.8249 
0.2996 

2.963 
3.735 
2.165 
1.371 
0.5280 
0.1928 
0.0534 

0.1552 
0.1576 
0.1587 
0.1547 
0.1277 
0.0837 
0.0381 

Triplet 

L = l  L = 2  I L = 3  L = 4  
‘0, 

56.12 
12.87 
9.964 
8.300 
4.863 
2.4159 
0.8940 

49.22 
7.791 
4.7 20 
3.373 
1.484 
0.5674 
0.1596 

0.4650 
0.4598 
0.448 1 
0.431 8 
0.3630 
0.2456 
0.1 136 

0.2788 
0.2722 
0.2700 
0.2652 
0.2384 
0.1784 
0.0951 

0.1886 
0.1764 
0.1756 
0.1744 
0.1639 
0.1330 
0.0797 

3.265 1.850 
1.851 1.504 
2.219 1.361 
2.099 1.237 
1.225 0.8376 

0.8528 
0.8193 
0.7700 
0.7198 
0.5509 
0.3283 
0.1328 
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T A B L E  V. (Con t inued)  

230.42 
74.475 
36.478 
21.559 
7.3349 
2.3518 
0.55809 
0.20876 

- 
k 2  - 

0.24 
0.50 
0.68 
0.83 
1.23 
1.80 
2.87 
3.91 

0.24 
0.50 
0.68 
0.83 
1.23 
1.80 

0.24 
0.50 
0.68 
0.83 
1.23 
1.80 

0.24 
0.50 
0.68 
0.83 
1.23 
1.80 

0.24 
0.50 
0.68 
0.83 
1.23 
1.80 
2.87 
3.91 

0.24 
0.50 
0.68 
0.83 
1.23 
1.80 
2.87 
3.91 
- 

4.0427 1.9014 0.30797 0.57480 0.29675 0.06128 250.09 290.69 
7.0963 0.92172 0.48094 0.45745 0.30098 0.05695 83.965 109.714 
6.5573 1.0156 0.29902 0.27895 0.23113 0.04364 44.978 63.742 
5.4143 1.1653 0.26124 0.15835 0.15225 0.02533 28.956 43.572 
2.9703 1.1453 0.37750 0.1 1091 0.04377 0.03572 12.269 20.571 
1.3155 0.74676 0.39290 0.18754 0.07731 0.02824 5.2348 9.6066 
0.40443 0.30267 0.21866 0.15188 0.09753 0.05832 1.8355 3.8272 
0.17048 0.14307 0.1 1656 0.09255 0.06896 0.04864 0.8677 2.1455 

D. L - 4 , - 4 ,  E v e n ,  B o r n  Approx ima t ion  

- .  

L = O  L = l  L = 2  L = 3  L = 4  L = 5  

31.96 91.21 154.6 92.86 55.86 36.79 
9.371 12.65 30.88 20.53 12.99 8.451 
4.156 5.953 13.19 9.628 6.563 4.508 
2.542 4.560 7.424 5.249 3.811 2.793 
1.208 2.879 2.906 1.734 1.106 .8438 

.5612 1.385 1.238 .8299 .5109 .3005 

L = 6  L = 7  'E 

24.37 487.7 
5.695 100.6 
3.130 47.13 
2.032 28.41 

.6912 11.37 

.2022 5.028 

L = 4  

1.252 
0.8285 
1.035 
0.9248 
0.6072 
0.4001 

~ = 5  L = 6  L = 7  

0.7359 
0.3266 0.2754 
0.2270 0.1764 
0.2097 0.1162 
0.2079 0.0717 
0.2024 0.0962 

L :  1 L = 2  

L = 4  

41.31 
10.38 
5.149 
2.950 

.9568 

.4150 

.1780 

.0982 

= E *  L = 5  L = 6  L = 7  

26.12 17.13 338.56 
6.373 4.255 72.17 
3.337 2.302 37.31 
2.013 1.468 23.333 

.6421 .4924 9.419 

.2540 .1639 .1180 4.027 

.1291 .0907 -0623 1.4619 

.OB10 .0655 .0524 0.7570 

12.488 
0.1758 
0.07386 
0.220 32  
0.250 24 
0.13477 
0.04395 
0.01868 

QT 

566.32 
129.8 

66.56 
43.07 
19.56 

9.382 

Singlet  

L = 4  L = O  L = l  L = 2  'ES 

26.54 
7.365 
4.363 
2.816 
1.7381 
1.023: 

1.964 
0.5131 
0,2346 
0.1227 
0.1071 
0.0571 

5.238 
3.159 

17.34 
1.544 

0.4896 
0.4063 
0.2539 
0.1191 
0.0635 
0.0954 

0.2460 1.260 
1.439 
0.4944 
0.1532 
0.2249 
0.1818 

~.~~ 
2.091 
1.252 
0.6796 

11039 
0.9930 
0.6167 
0.2926 0.3366 

1 
L5.62 26.72 32.44 
4.844 3.384 19.97 
2.247 3.886 10.33 
1.293 3.650 6.287 
0.4842 2.287 2.424 7; 0.1909 1.063 0.9673 

178.89 
72.80 
45.22 
32.45 
17.28 I 8.943 

2, T 

83.44 
42.15 
23.82 
15.957 

7.500 
3.586 

L = 3  

6.674 

5.922 
3.476 
1.418 
0.6659 

12.52 

G. L-4 - 4 ,  Even ,  1 s  -2s  -2p E i g e n s t a t e s  Coupl ing Approx ima t ion  

Singlet  

L = O  L = 4  L = 5  

7.852 
2.470 
1.344 

.7424 

.2813 

.1357 

.05 1 3  

.0267 

13.45 
5.026 
2.283 
1.316 
.6752 
.3339 
.lo53 
.045 1 

38.56 15.44 8.610 
3.201 2.101 

1.079 .7580 

6.432 
1.417 26.548 

.7903 13.047 

.5313 7.524 
2.641 

~ -~ ~ 

7.433 
3.025 
1.579 

4.900 
2.683 
1.518 

.3663 

.1816 
-0739 
.0373 

0.6254 
.2862 
.0930 
.0422 

T r i p l e t  

L = O  L = 2  L = l  

75.79 
4.540 
4.018 
3.614 
2.290 
1.055 

.3217 

.1366 

L = 3  QT 

518.92 
122.01 

67.46 
44.54 
20.11 

9.531 
3.945 

63.10 
20.66 
10.75 

6.400 
2.465 

.9303 

.2907 . 1 285 

17.21 
z1.62 
8.986 
4.796 
1.599 

.6614 

.2330 

.1143 

27.90 
4.337 
2.823 
2.032 

.9741 

.4291 

.1564 

.OB05 
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LIST O F  FIGURES 

Figure 1 - 1s-2s Excitation Cross  Section. 

a r e  given in references 1 and 2. 

sponds to a wave function which contains the 1s and the 2 s  

atomic states.  

dition of the 2p states to the above wave function. The 

p = 0 curve is  the case when the exchange potentials a r e  

neglected. In 1s-2s-2p sym it is assumed that electrons 

a r e  spinless particles whose total wave function i s  symmetric.  

The experimental curves 

The 1s-2s curve co r re -  

The 1s-2s-2p curve corresponds to the ad- 

Figure 2 -- 1s-2p Excitation Cross  Section. The experimental curve is 

given in reference 3. 

wave function which contains the 1 s and the 2p atomic states.  

The r e s t  of the curves have the same meaning a s  in Figure 1. 

The 1s-2p curve corresponds to a 

Figure 3 -- 1s-1s Elastic Cross  Section. The curves have the same 

meaning as in  Figure 1 and 2. 

Figure 4 - 2s-2s Elastic Cross Section. The curves have the same 

meaning as in Figures 1 and 2.  

Figure 5 - 2p-2p Elastic Cross  Section. The curves have the same 

meaning as in  Figure 2 .  
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